《一元一次方程和它的解法》复习教案

时间:2024-07-25 17:09:44
《一元一次方程和它的解法》复习教案

《一元一次方程和它的解法》复习教案

作为一名默默奉献的教育工作者,通常需要准备好一份教案,教案是保证教学取得成功、提高教学质量的基本条件。那么问题来了,教案应该怎么写?下面是小编为大家整理的《一元一次方程和它的解法》复习教案,仅供参考,大家一起来看看吧。

《一元一次方程和它的解法》复习教案1

教学目的

1、使学生巩固等式与方程的概念。

2、使学生掌握等式的性质和灵活掌握一元一次方程的解法,培养学生求解方程的计算能力。

教学分析

重点:熟练掌握一元一次方程的解法。

难点:灵活地运用一元一次方程的解法步骤,计算简化而准确。

突破:多练习,多比较,多思考。

教学过程

一、复习

1、什么是一元一次方程?一元一次方程的标准形式是什么?它的解是什么?

2、等式的性质是什么?(要求说出应注意的两点)

3、解一元一次方程的基本步骤是什么?

以解方程-2x+=为例,说明解一元一次方程的基本步骤与注意点,并口头检验。

二、新授

1、已知方程(n+1)x|n|=1是关于x的一元一次方程,求n的值。

分析:根据一元一次方程的定义,得|n|=1且n+1≠0,解得n=1。

解:略

2、下列说法中,正确的是( )。

A -3x=0的解是x=-3

B -x+1=4的解为x=-

C-1=的解是x=1

D x2-x-2=0的解是x=2, x=-1(D正确)

3、x等于什么数时,代数式x+5的值比的值小2。

解:(解略,应根据题目的意思列出方程。)

4、根据下列条件列出方程,并求出方程的解。

(1) 某数x的3倍减去9,等于某数的'3分之1加上6;

(2) 已知-3m3(x-2)n与25m2+xn是同类项,求x的值;

(3) 已知代数式2[(x-1)+5]+x+1与代数式3[x-8(x-4)]+7的值互为相反数,求x的值。

5根据下列方程的特点解方程。

(题目见课本中P208、16的2,4)

三、练习

P209习题:20。

四、小结

1、略。

五、作业

1、P240 A:1,2,3,4。

2、B:1,2。

《一元一次方程和它的解法》复习教案2

教学目标:

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2.培养学生观察潜力,提高他们分析问题和解决问题的潜力;

3.使学生初步养成正确思考问题的良好习惯.

教学重点和难点:

一元一次方程解简单的应用题的方法和步骤.

课堂教学过程设计:

一、从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题.

例1某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并透过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们明白方程是一个内含未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中带给的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

本节课,我们就透过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原先有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原先重量-运出重量=剩余重量)

3.若设原先面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原先有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42500,

所以x=50000.

答:原先有50000千克面粉.

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原先重量=运出重量+剩余重量;原先重量-剩余重量=运出重量)

教师应指出:(1)这两种相等关系的表达形式与“原先重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,能够任意选取其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的.状况,教师总结如下:

(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.那里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有好处.

例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5.

其苹果数为3×5+9=24.

答:第一小组有5名同学,共摘苹果24个.

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.

(设第一小组共摘了x个苹果,则依题意,得)

三、课堂练习

1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

2.我国城乡居民1988年末的储蓄存款到达3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.

四、师生共同小结

首先,让学生回答如下问题:

1.本节课学习了哪些资料?

2.列一元一次方程解应用题的方法和步骤是什么?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答状况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选取变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆.

五、作业

1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3.某厂去年10月份生产电视机20xx台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?

4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数

《《一元一次方程和它的解法》复习教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式