小数的意义教案

时间:2024-07-25 17:21:20
关于小数的意义教案合集九篇

关于小数的意义教案合集九篇

作为一名教职工,编写教案是必不可少的,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。如何把教案做到重点突出呢?下面是小编为大家整理的小数的意义教案9篇,欢迎大家分享。

小数的意义教案 篇1

教学目标:

1.结合具体情境,掌握用“四舍五入法”求小数的近似数,会把较大的数改写成用“万”或“亿”作单位的数。

2.在学习小数意义和性质的过程中,培养探求知识的兴趣。

3.提高合作探索知识的能力。

重点难点:

用“四舍五入法”求小数的近似数。

教学方法:

启发引导、自主探究

教学过程:

一、复习导入新课

教师出示复习题,让学生板演。

372800 19000 725000000 844000000

师生共同订正,点拨“四舍五入法”求近似数。

教师引导学生观察信息窗。

二、讲授新课

1、教师提出问题:“测量同一个蛋的长度,为什么两个人的读数不一样呢?”给学生二分钟时间考虑。

一些学生可能看不出来,教师引导

教师引导学生按照整数求近似数的方法——四舍五入,解决求小数近似数的问题。

2、 教师出示数值“3.9423”让学生解决。

学生有的可能写出“3.94”。

有的可能写出“3.9”。

有的可能写出“4”。

3、教师引导学生比较探究结果的不同,分组讨论,然后让学生回答。

4、教师和学生共同归纳总结:用“四舍五入”法求小数的近似数

保留一位小数时,只看它的百分位上的数是大于5,还是小于5。如果大于或等于5,就向前一位进一,同时将百分位及百分位后面的数舍去;如果是小于5,就直接将百分位及百分位后面的数全部舍去。

5、教师引导学生分析总结:用“四舍五入法”求小数近似数应注意什么?

有的学生可能回答注意小数点;

有的学生可能回答注意别忘进位;

有的学生可能回答注意四舍五入……

教师引导学生一起总结。

三、巩固运用

教师让学生做自主练习第1—3题,用多种形式巩固求小数近似数的基本练习。(学生独立完成)

四、点拨归纳

教师归纳本课的所学的数学知识,点拨疑难点。(学生小组中充分交流)

五、布置作业

自主练习题4、5、题。

板书设计:

蛋的世界——小数的意义和性质

3.9423≈3.94

≈3.9 四舍五入≈4

1754000=175.4万 1754000≈175万

小数的意义教案 篇2

教学目标:

1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。

2.经历探索小数意义的过程,培养归纳能力。

3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。

教学重难点:理解小数的意义和小数的计数单位。

教具准备:米尺、课件。

教学过程:

一、回顾导入

1.读一读信息(课件出示)想一想,这样写符合实际吗?

(1)老师的体重是565千克。

(2)小明的身高是145米。

(3)笑笑的数学测验成绩是935分。

2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?

3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。

二、探索新知识

1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?

指名测量,其他同学观看。

2.汇报测量结果。

3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。

4.出示米尺图。

上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?

5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?

十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?

6.出示米尺。

指着板书:有什么新发现?学生汇报。

7.提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?

让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。

学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。

8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。

小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……

进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。

三、巩固练习

第一层练习:分数小数互化。

第二层练习。

1.填空

(1)0.8表示( ),它的计数单位是( ),它有( )个这样的计数单位。

(2)1里面有( )个0.1和( )个0.01。

(3)0.52是由( )个0.1和( )个0.01组成的。

2.判断:

(1)0.8是把1个整体平均分成10份,表示这样的8份。 ( )

(2)1毫米写成小数是0.01米。 ( )

第三层练习: 猜数游戏。

小明和小红的数各是多少?

四、总结

师生共同回顾本节课内容。

反思:

“小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。

小数的意义是什么?一位小数、两位小数是怎么 ……此处隐藏4840个字……p>

5、教师公布答案。

三、精讲例题

1、把一米平均分成100份,一份就是1厘米,36厘米就是100分之36米,用小数表示就是0.36米。

2、黑板总长等于2米+0.36米=2.36米

3、自学回答,鹌鹑蛋和鸵鸟蛋的质量分别是多少千克?

4、教师叫学生回答。

四、当堂训练。

1、复习导入,判断对错。(小黑板出示)

(1)把1元平均分成100份,10份是1角。( )

(2)把1000千克平均分成1000份,5份是0.005千克。( )

(3)百分之十二就是0.02。( )

(4)十分之七米用小数表示是10.7米。( )

(5)0.05表示百分之五。( )

(6)3.21是三位小数。( )

(7)0.034写成分数是 ( )

2、写出下面的小数。(9分)

(1)蜂房的容积几乎都是零点二五立方厘米。写作: __________

(2)人的眼睛大约能分辨只有零点零六毫米的物体。 写作:_________

(3)珠穆朗玛峰是世界最高的山峰,海拔八千八百四十四点四三米。

写作:____________________

3、有一个数,十位、十分位、千分位上的数字都是2,其余各位都是0,它是( ),读作( )。(8分)

4、请你用0、3、6、9四个数字(每个只能用一次)按要求组数。

(1)整数部分最大,而小数部分的千分位是6的数是( )。

(2)0不读出来而小数部分是两位小数的是 ( )。

(3)0读出来,而小数部分只有一位小数且不是0的是( )。

五、作业布置

作业本做2、4题,完成相关配套练习。

1、独立完成课本第4页三道练习题。教师集体订正答案。

2、独立完成课本练一练第1题。

板书设计:

小数的意义(三)

小数的意义教案 篇9

教学目标:

1、借助计数器,掌握小数的数位。

2、根据小数的数位顺序表,能理解数位顺序表上的计数单位,以及进率关系。

3、结合具体情境,能抽象出小数的基本性质的具体内容,并能牢固掌握和灵活运用。 教学重点:

掌握小数的数位和计数单位。

教学难点:

掌握小数的基本性质。

教学准备:

课件、计数器

教学过程:

一、复习旧知,导入新课

过渡:同学们,通过前几节课的学习,我们认识了小数的意义,接下来老师要来考考你们,看你们掌握得怎么样?

(课件出示)1、填空。

3写成小数是( ) 10

660.56表示()写成小数是() 100

6780.625表示( )写成小数是( ) 10000.4表示( )

2、读一读下面一段话中的小数。

北京地铁10号线列车的最高运行速度是80千米/时,约为22.222米/秒。

师揭题:今天这节课,我们首先要来研究小数“22.222”中每个数字的含义。(板书课题:小数的意义(三))

二、动手操作,探究新知

1、认识数位。

出示计数器,师问:这个计数器有什么特点?

学生观察后汇报

师小结并引导学生拨数:同学们的观察都非常仔细,??百位、十位、个位、十分位、百分位、千分位??都是小数的数位。小数点的左边依次是个位、十位、百位??右边依次是十分位、百分位、千分位??那你们能在这个计数器上拨出“22.222”吗?学生尝试在计数器上拨数,师指名上台演示。

课件出示拨数情况,引导学生认识:

“22.222” 中有5个“2”,这5个“2”所表示的意义是不同的。小数点右边第一1个“2”在十分位上,它表示2个0.1.

师提问:小数点右边第2个“2”在百分位上,它表示2个

引导学生思考后回答:11,用小数表示是0.1,所以这个“2”也可以表示210101,它也可以表示多少? 1001可以写成0.01,所以这个“2”表示2个0.01. 100

师追问:说得很有道理,那最后一个“2”在什么位置,表示多少呢?

学生思考后回答:最后一个“2”在千分位上,表示2个1,也可以表示2个0.001. 1000

师引导学生再次思考:小数点左边两个2分别表示多少?

学生先独立思考,再小组内交流,最后集体汇报。

2、认识计数单位及计数单位之间的进率。

师引导思考:整数的数位顺序表是个位、十位、百位??,那么小数的数位顺序是怎样的呢?

课件出示小数的数位顺序表,介绍数位名称及对应的计数单位:

小数点右边第一位是十分位,计数单位是十分之一(0.1);

小数点右边第二位是百分位,计数单位是百分之一(0.01);

小数点右边第三位是千分位,计数单位是千分之一(0.001);

小数点右边第四位是万分位,计数单位是万分之一(0.0001);

课件出示整数的数位顺序表,进行小组讨论:看一看,比一比,在数位顺序表上整数部分与小数部分有何异同?

学生讨论后汇报交流,师生共同总结:

相同点:相邻计数单位间的进率都是10.

不同点:整数部分在小数点的左边,数位顺序是从右往左依次排列,计数单位由小到大,只有最小的计算单位——1,没有最大的计算单位;而小数部分在小数点的右边,从左往右依次排列,计数单位由大到小,没有最小的计数单位,只有最大的计数单位——0.1.

师强调:小数的半数单位也是“满十进1”,引导学生观察教材第6页“看一看,说一说”的图片,进而发现:10个0.1元是1元;10个0.01元是0.1元,再次明确小数的计数单位是“满十进1”。

三、巩固运用,拓展提升

1、出示教材第7页“试一试”情境一:同样的毛巾,小熊商店每条5元,小狗每条5.00元,这两个毛巾的价格一样吗?

引导学生讨论后交流汇报。

2、出示教材第7页“试一试”情境二:涂一涂,你发现了什么?

让学生自主涂色,并汇报:0.6和0.60一样大。

师提问:哪位同学能够运用我们学过的数位和计数单位的相关知识来解释一下为什么0.6和0.60一样大?师归纳小结小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

3、即时练习。

课件出示题目:下面的数中哪些“0”可以去掉?哪些“0”不能去掉?

3.203.09 6.06 50.44 5.700 200.04

四、课堂小结

通过这节课的学习,我们学会了哪些知识?

板书设计:

《关于小数的意义教案合集九篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式