找规律教学反思

时间:2025-04-16 07:59:19
找规律教学反思

找规律教学反思

身为一名人民老师,课堂教学是我们的任务之一,通过教学反思可以有效提升自己的课堂经验,那么教学反思应该怎么写才合适呢?下面是小编整理的找规律教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

找规律教学反思1

《找规律》本单元研究简单的搭配现象。日常生活里经常会遇到与选配有关的实际问题,如服饰选配、饮食搭配、颜色搭配、路线选配、队伍组配……让学生研究一些常见的搭配现象,初步学会搭配与选择的方法,体会选配的规律及计算,是发展数学思考的载体,也有益于学生提高生活的自理能力。本节课是这一单元的第一课时,研究简单的搭配现象。联系实际问题理解“选配”的含义,学习不重复、不遗漏地有序选配,探索计算选配方案总个数的方法。

本节课中我首先设置小明购买活动用具的情境,提出一个“可以有多少种选配方法”这个问题。一下子提出这个问题学生是有难度的,之前我设置了一个坡度:提问“可以怎样选?”借助这个问题让学生理解什么是“选配”。接着让学生有目的的探讨一共有多少种选配方法?此环节通过生与生的交流,让学生明白不仅可以“先选木偶、再配帽子”,也可以“先选帽子、再配木偶”。这样通过观察、猜测、交流等多种学习活动,打开了学生的选配思路,激发动手选配的热情,构建起对数学富有个性理解的过程。

接着是用图形代替实物,连线表示选配,再次体会选配的过程,设计这个层次的活动是让学生经历从实物到图形,从具体到抽象的过程。我们都知道,数学教学中的解决实际问题,其目的不局限于问题的答案是什么,教育价值更体现在获得实际问题里的数学知识和数学思想方法。这里用图形代替实物有取材方便、操作简便等优势,还有利于学生深入体会选配的含义,引导学生逐步构建数学模型。

然后是找寻两种物体选配间的规律。学生发现规律并不是很困难。因此在此环节中我有意设计了让学生分两组进行研究:一组研究2顶帽子,8个木偶的选配情况;一组研究4顶帽子,4个木偶的情况;研究了三组事例:2、3、6;2、8、16;4、4、16,这样学生比较容易发现两种物体个数与选配种数之间的关系。最后让学生在得出两种物体间搭配规律后进行验证。

本节课中在这几个环节让学生去探索:

1、学生用学具摆一摆之前,教师给予学生比较明确的学习小提示:就是要不重复不遗漏地找出所有选配方法。因为要不重复不遗漏地找出所有选配方法,富有挑战性,容易激发学生主动探索规律的愿望。

2、研究两种物体的数量与选配方法的种数,这三种数量之间的关系这是本课的一个重点。或许有些学生在2、3、6的情况研究中能够发现规律,但并不能仅仅从一个例子中得出规律,所以借助这个例子,再研究2个例子,这样让学生在“找”中探究,让学生在“找”中思辨,从而在头脑中形成共识,悟出规律,让规律在学生的探究中内化,建立解决这类问题的模型。

3、练习的设计,本节课的.练习设计重点突出生活因素,创设生活情景,让学生充分感受数学与生活的关系。在最后设计了衬衫与领带的搭配,让学生从搭配的结果反向思考两种不同事物数量的可能性。在这里考虑到思考的难度,设计了一个坡度,分别说出3件衬衫可能的搭配方法,最后再说出选配方法的种数是12的可能性。

总观本节课,我努力通过课本中的主题图创设情景,为学生创设思考的空间,充分发挥学生的潜能,在学生分工合作中,选一选,配一配,培养孩子有序、有规律的思考问题的方法,找出选配的种数与两种物体数量间的关系,结合生活实际让学生发现数学就在身边。

找规律教学反思2

本学期的找规律单元是要学生用平移的方法探索并发现简单图形覆盖现象中的规律,能根据把图形平移的次数推算被该图形覆盖的总次数,解决相应的简单实际问题。

开始,我出示了一张由1-10组成的数表和一个红色方框,指出用这个框每次可以框出两个相邻数,得到一个和后,我问学生:“这样移动方框一共可以得到多少种不同的和?”然后让学生可以拿着手中的数表想一想,也可以框一框,在很多学生有了答案后,我让学生发言说出自己的想法。我以为学生会按照书上的本意,用一一列举的方法来求出答案:1+2,2+3,3+4,……9+10。结果那位学生却回答说:10-1=9。这是书上与我预设时都没考虑到的,我当时有一点小小的意外,但我还是微笑着鼓励他说说他的想法。可能这是他的一种直觉思维吧,他一时解释不出这样算的原因。我知道他这样做是完全可以解释的:第一,可从找规律的角度来解释。如果有2个数,每次框相邻2个数,就得到1个和,如果有3个数,每次框相邻两个数,就得到2个不同的和,照此下去,有10个数,每次框2个相邻数,就会得到9个不同的和,所以10-1=9;第二,可从排头法的角度来解释。一次框出2个数,1可以排头,2可以排头……9也可以排头,10不能排头,10个数中有1个数不能排头,所以10-1=9(种)。当时我有几秒的犹豫,是帮助他把这种思路更加明晰呢?还是继续演绎预设的教案?为了不让课堂节外生枝,我选择了后者。虽然很顺利地完成了教学任务,但自己总觉得缺少了点什么。

接着,继续用红色方框分别框住2个、3个、4个、5个后,我出示了表格,并提出了书上的两个问题:(1)平移的次数与每次框出的个数有什么关系?(2)不同和的个数与平移的次数有什么关系?让学生通过小组交流来找出规律。学生经过独立思考,小组讨论,纷纷发现了规律。在汇报第一个问题时,出现了这样几种答案:(1)每次框出的个数与平移的次数相加和是10;(2)每次框出的个数是相邻的自然数,而四次平移的次数也是相邻的自然数;(3)每次框出的个数与平移的次数奇偶性相同,或者都是偶数,或者都是奇数;(4)每次框出的'个数与平移的次数的逐渐减少2。看来学生的思维很活跃,寻找规律的角度也很新颖,从看两者的和联系到了看两者的差,从横向寻找规律联系到纵向的比较,前两条规律是我预设到的,而后两条却是没考虑过的。当学生汇报后,我知道后两个发现并没有普遍性,但该如何向孩子们解释后两个发现只是特例呢?如果再换例说明显然太费时,也并不一定能讲清,而且还会冲淡主题,把本质的东西给抛弃了,得不偿失。但如果肯定他们的发现是对的话,显然又不行。当时我说:“你们很聪明,在这一道简单的例题中,发现的可真多。”虽然话是这样说了,但自己感觉心中特没底气。

课上完了,感觉自己对教材深层次的钻研能力还需加强,对课堂中学生即时生成的资源,我没能很好地利用与把握住。

找规律教学反思3

著名的特级教师靳家彦曾讲过:“顺应学情,是教育的生命线。”《找规律》一课的教学,再一次使我深深感受到:优化课堂教学,提高课堂教学的有效性,必须立足并顺应学情的发展,以学定教,顺学而导。

一、立足学情、以学定教。

苏霍姆林斯基曾指出:“没有欢欣鼓舞的心情,没有学习兴趣,学习也就成了负担。”作为二年级的小朋友,第一次在 ……此处隐藏11176个字……固提升。

4.联系生活,感受生活中的规律美

多媒体展示欣赏一张张图片的出现,使学生感受生活中有规律的事物,让学生意识到生活离不开数学,数学是有用的,体现了“学生活中的数学、学有用的数学”的理念。本课的最后,希望同学们用自己的眼睛找找生活中的规律美,进一步体现了数学的生活化。

5.说一说身边有规律的事物

这个环节更体现的数学的生活化。也培养的学生语言表达能力。通过观察学生发现座位的排列是按照一个男生,一个女生为一组有规律的排列,头顶上的灯是一个长方形的灯,两个圆形的灯为一组有规律排列,连老师的衣服上也有规律。

找规律教学反思14

本单元教材只安排了两个例题,第一个例题提供了场景图,包含了abab……,abcabc……,aabbaabb……这样的排列规律,目的是让学生在观察发现后运用找到的规律确定具体位置的物体是什么,如盆花、彩灯、彩旗;第二个例题让学生根据找到的规律,分别计算队伍中白兔与灰兔的只数,即对例一技能的应用。两个题目给出数据均比较简单。本学期我教的这个班,学生学习情况存在差距,如何根据实际情况活用教材,我做了一些思考和设计。

1、由生活中发现数学,有效激“趣”。

我将学习的课题改为《探索周期》,上课前先开门见山的引出生活中的实例,如:每60分钟一小时,每24小时一天,每7天一周……引导学生观察。通过一系列实例帮助学生了解“周期”的概念,再让学生在实例中迅速的发现周期,使学生在自主思考中理解“周期”的概念,同时初步渗透了无限、循环的知识,为今后的数学学习打下坚实基础。这个环节也有利于让学生发现数学的“有趣”,产生“兴趣”。

2、在自主探索中发现,合理择“法”。

学生学习首先要得到全面发展,在兼顾全体,保证教学任务完成的前提下,也要注重学生个性化的发展,最终达到可持续性发展。

(1)自主探索是基础

课标中指出要让数学学习充满挑战性,结合对学生认知能力和已有经验的了解,我调整了教材的顺序,在学生理解了“周期”后就设计了具有一定难度的题目,顺流而下,采用自主探索的方法,让学生解决问题:

“观察1÷7=0。142857142857……,你知道小数部分的第100位上是几吗?”

学生自己思考,并尝试独立解决问题,试想如果此时就让他们小组交流,势必使那些已经掌握方法的学生和盘托出,那些能力一般或较弱的学生失去思考的机会。自主思考的时间对于教师来说是很宝贵的,我们需要走近学生,这不是简单的巡视,摆个样子,此刻正是了解他们的思路和方法的大好时机,同时也是对教师预设的一个补充,让教师发现学生的方法,发现学生存在的问题,发现学生思路中的精彩,更可以发现自己的遗漏。

(2)适时追问切重点

对于汇报中出现的“100÷6=16……4”,我也是让学生先解释、评价,再逐渐引导学生体会要写成“100÷6=16(组)……4(个)”的重要性,发言中我追问“这里的4除了表示还剩4个,还表示什么呢?”引导学生更深入的思考,“这剩下的4个,其实是第17组的前4个数字”,而学生也在这层层递进的思考中更准确的说出了“小数部分的第100位即小数部分的第100个数字是第17组的第4个”,至此为止学生的理解已经完全到位了。

3、在巩固拓展中提升能力,感受生活。

(1)巧设障碍,建构知识

练习中,为了让孩子们活用方法,我还设计了这样的练习“一些图形如下图排列△○○□○○□……,你知道第30个图形是什么吗?”与前面的题目不同的是,第一个图形并不在周期的范围之内,有的学生发现了,有的学生却忽略了,在交流反馈的过程中,孩子们再一次认识到“认真观察”的重要性,同时对于“周期”有了更深刻地理解,使学生不断思考、层层推进中建构数学知识。

(2)丰富算法,沟通知识

在例题的基础上我设计了这样的后续练习:“1÷7=0。142857142857……你知道小数部分100个数字的和是多少吗?”学生在今天学习的基础上很快列出了算式(1+4+2+8+5+7)×16+(1+4+2+8),并且清楚说明了自己的想法,我给予了充分的肯定。

这时有学生举手了,说出了不同的方法(1+4+2+8+5+7)×17-(5+7),有的学生立刻看明白了,有的学生不太明白,我没有做出即时的评价,而是让学生先算一算,比一比两个算式的答案,孩子们发现结果相同后,再进行了思考,有孩子举手想发言了:“最后剩下的4个数字是第17组的前4个数字,我们可以先计算完整的17组数字,再去掉多算的两个,结果不变”,说得真好。其实这种方法中包含着运算律的合理使用,往更深的`角度去想,这就是沟通了数学知识之间的联系,这是孩子自发的数学思考,很有价值。

(3)融入生活,运用知识

源于生活,用于生活练习中既有“发展的南京迎青奥,发展的南京迎青奥……,你知道这样一直写下去,第20xx个字是什么吗?”这样不复杂但亲切有趣的练习,也有综合性比较强的拓展练习“今年的六月一日是星期二,那么20xx年的元旦是星期几呢?”

解决拓展题的时候难点已经不仅仅是找到周期,而在于合理的表示周期和计算出从头到尾的总天数。[二、三、四、五、六、日、一]七天为一周期,合理准确的算出从六月一日到十二月一日共多少天就可以根据余数解决这个问题,这其实就是知识的综合运用,也就是课标中要求要求达到的“灵活运用”。

一课上完,在完成教学基础目标的同时,也让不同的学生有不同的收获和提升。教师也随着学生们在课堂上的精彩生成不断提升着自己。很有研究的味道的,我想这也就是“教学相长”的意义所在吧。

找规律教学反思15

我今天执教的是人教版小学数学一年级下册第七单元“找规律”第一课时,这是找规律的起始课,主要让学生自主学会寻找简单的图形排列规律,为后面课时的学习打好基础。由于学生在学前阶段就曾接受过“找规律”这部分知识的启蒙教育,因此,对于学习“简单的图形排列规律”这部分内容较为容易。但是一年级学生的年龄特点是:注意力集中时间短,精神容易分散,语言表达不完整。因此,加强直观教学,提高数学学习趣味性,强化语言表达训练,是本节课教学中我较为注重的学习策略。在教学环节当中,我通过让学生看一看、说一说、找一找、摆一摆、涂一涂等活动,调动学生的多种感官参与学习,把学习的主动权交给学生,极大地调动了学生的学习兴趣,让学生在动态的`过程中感悟规律、经历发现规律过程,并获得一些数学思想方法和积极的情感体验。

当然,这节课还有不少缺憾值得我反思。如:在引导学生观察主题图情境时我处理得有些仓促,在逐个呈现彩旗、彩花、灯笼、小朋友排列的队伍图时,没能清楚的引导学生在找事物规律的时候,只要找到一组是什么,在看看剩下的是不是一组一组重复的出现,如果是,我们就说它是有规律的,这样就造成了部分学生对找规律的方法不能完全掌握。另外就是没有全面顾及到不同层次的学生,及时实施多元的评价。在今后的教学当中,我一定会不断的完善自我,找出不足,及时反思,提高自己的教育水平。

《找规律教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式